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Abstract  

Clarifications and observations are made regarding Segletes' equation of state, in response 
to recent comments and criticisms. A theoretical justification for the form of the equation of 
state is laid out in more precise detail. The model is shown to produce high-quality fits to 
shock-, as well as cold-compression data, especially when accounting for the experimental 
variability of the model input parameters. The falseness of the correspondence between the 
volumetric and vibrational spring constants for an atomic lattice, previously inferred from 
Segletes' equation of state, is proven by alternate means. The non-Griineisen behavior of 
aluminum is addressed, and a brief note is made regarding the nature of isentropic transitions. 
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1. Background 

Since the introduction of "An Equation of State for Metals [1]," a good deal of interest has 

been shown in the work and its sequel papers [2-4]. Some of that interest has come in the form 

of questions from would-be users of the model. Other helpful comments and suggestions came 

from readers interested in the subject, and, not without precedent, criticisms were leveled by 

various reviewers. Hence, in this report, further explanation is provided to buttress the theoretical 

basis for some of the model's features. This paper answers reviewer's questions, points out some 

subtler features, and ties up loose ends regarding Segletes' equation of state for metals. 

The earlier documents [1-4] should be consulted for full understanding of the model. To 

facilitate a proper frame of mind for the current reading, however, a cursory review of the work 

leading up to this report is given here. Segletes [1] introduced an equation of state for metals, 

which has the unique distinction of being both a frequency-based (i.e., characteristic-temperature- 

based) approach, as well as a model that incorporates our current understanding of the lattice 

potential. 

Earlier frequency-based approaches, like those of Slater [5], Dugdale and MacDonald [6], and 

Vashchenko and Zubarev [7] did not have lattice-potential data available to them to critically test 

their models. Later models, like those of Rose et al. [8], Vinet et al. [9,10], Baonza, Cäceres, 

and Nunez [11], and Baonza et al. [12], though reflecting a more current understanding and recent 

data of the lattice energy potential, remain, by contrast, in the domain of density and interatomic 

distance, rather than that of the lattice vibrational frequency spectrum. One point that this report 

shows is that the characteristic temperature of the lattice, which relates to the vibrational 

frequency spectrum, is necessarily the natural variable in an equation of state for solids, in 

preference to, for example, interatomic distance. 

Segletes [1] gave his equation as 

p v - E = Eb {[(0/0o)* - l] + K (K - 1) (0/0o)* ln(0/0o)}   . (1) 



In this equation, 0 is the characteristic temperature of the lattice, which is (according to 

Grüneisen theory) taken as a function of volume only. The variables p and E are the pressure 

and specific internal energy respectively; K is a parameter, given by C0 /(T0 Eb
m) = T|/(3 T0), where 

C0 is the reference bulk sound speed at zero temperature and pressure, Eb is the specific lattice 

binding energy, and T| is the lattice anharmonicity parameter given by Rose et al. [8]; and 

Y = v/r = (dE/dp)v is a thermodynamic variable introduced [13,14] for ease in manipulating the 

governing equations. When this variable, \\r, is likewise retained as a function of volume only 

(i.e., independent of temperature) the relationship that relates the characteristic temperature to the 

Grüneisen function becomes 

£--!. (2) 
0 \(f 

where the prime denotes differentiation with respect to specific volume, V. The generalized cold 

curve associated with eqn (1) is 

Ec = Eb{\ - (0/0of [1 - /nn(0/0o)]> (3) 

and 

pe = -±— (0/0o)* ln(0/0o)   . (4) 

In the original paper [1], in which eqns (l)-(4) were introduced, a linear form for \|f(V) was 

adopted, based on previous work on the thermodynamic stability of the Grüneisen equation of 

state [13-15]. Excellent fits to cold-compression data prevailed for the nine metals studied, with 

the resulting constrained predictions of shock-compression behavior also being exceptional into 

the megabar regime (with one explainable exception). On the lattice expansion side of 

equilibrium, an adequate correlation was achieved to the universal lattice potential of Rose et 

al. [8]. Eqn (3), which was the actual genesis of Segletes' model, was inspired by the universal 

potential of Rose et al. [8].   This inspiration, by which a functional correlation was drawn 



between the characteristic temperature and Rose's lattice parameter term, was not addressed in 

the greatest detail. This report, thus, lays out a much firmer justification for the functional form 

of Segletes' model than was, perhaps, implied in his original work [1]. 

In the next papers to have appeared on the subject, Segletes and Walters [2,3] examined the 

use of an empirical power-law fit for i|/(V), in preference to the linear fit used in the original 

work [1]. The fit to compression data remained exceptional, while at the same time, an excellent 

correlation was achieved in the expansion end of the lattice energy potential by relating, in a 

linear fashion, the lattice anharmonicity parameter, T), of Rose et al. [8] to the power-law 

exponent on \\r. By ignoring higher order terms, the power-law \|/(V) could be made, to 

reproduce the historical Grüneisen models of Slater [5], Dugdale and MacDonald [6], as well as 

Vashchenko and Zubarev [7] merely through appropriate selection of a single parameter—the 

power-law exponent on \|/(V). By retaining the higher order terms, however, important 

differences arose between the older and current models. 

In a more recent paper, Segletes [4] took the idealized quasi-harmonic form of his model 

(defined when the K parameter takes on a value identically equal to unity and the Grüneisen 

function varies as T~Vm [i.e., \|f ~ V2'3]) and was able to show how this form reduces to the 

harmonic approximation for an atomic lattice as the Grüneisen function approaches zero. Such 

a result is important, since the harmonic approximation is the viewpoint historically used to 

derive many of the results relating to the behavior of atomic lattices. 

Furthermore, Segletes [4] inferred from his model the falseness of the assertion that the 

volumetric spring constant, dFldk (where F is the interatomic force, and X is the lattice spacing) 

is, in general, the same spring constant that drives the vibrational frequency of the lattice (termed 

as BFvib ßx). The assertion of a proportionality between the volumetric and vibrational spring 

constants derives from one-dimensional (1-D) lattice theory in which the motion of an atom is 

influenced only by interactions with its nearest neighbors. In such an idealized configuration, 

the spring constants dFldk and dFvib ßx are indeed equal to each other. That such a 

proportionality of spring constants would hold, in the general case of real atomic lattices, is an 

assumption that has pervaded the literature on the subject, having been used, in part or whole, 

by Slater [5], Dugdale and MacDonald [6], Brillouin [16] and, more recently, Guinea et al. [17]. 



In this report, a simple example is offered that contradicts the assumed correlation of dF/dk and 

dFvib Idx, thereby disproving the basis for such an assumption. Such a refutation of 

proportionality is vital in promoting the acceptance of Segletes' model, since the model was 

shown [4] to deny such a proportionality. A qualitative explanation is offered as to why there 

should arise a functional discrepancy between dF/dX and dFvib/Bx. 

2. Justification for the Form of Segletes 

Segletes' model [1] was not derived from first principles of physics and might, therefore, 

seem to call into doubt the scientific basis of his form. On the contrary, the justification arises 

through the use of mathematical arguments to link the homogeneous solution of the Grüneisen 

cold curve to a term in the lattice energy potential of Rose et al. [8]. Let us proceed to prove 

this point. 

The Grüneisen equation of state may be expressed in a variety of ways, but amounts to the 

following: 

P-P«-<P-E«yvr ■ (5) 

In this equation, the reference functions are the pressure and specific internal energy states along 

a known reference curve, such as an isotherm, isentrope, or Hugoniot. Since, for Grüneisen 

materials, pref, Eref, and \|f are functions of volume alone, the solution to the Grüneisen equation 

of state, eqn (5), amounts to determining \|r and G(V), which satisfy 

p\f-E = G(V)   . (6) 

Along the cold curve, where pc = -E'c, one obtains the differential equation 

XfE'e + Ec = -G(V)   . (7) 

A complementary solution to the homogeneous form of eqn (7), corresponding to G(V) = 0, is 
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Ec = C0   , (8) 

which may be verified through the use of eqn (2), where C is an integration constant. 

Incidentally, it is this complementary solution that constitutes the cold curve in both the Einstein 

and the Debye equations of state {i.e., no particular solutions were offered). 

When Rose et al. [8] made their case for a universal form of the lattice energy potential, they 

proposed a form given by 

Epot = -Eb(1 + a + 0.05a3) exp(-a)   , (9) 

where Eb is the specific lattice binding energy, and a is a dimensionless parameter defining the 

relative spacing of the lattice atoms, given by 

a =r,((WV0)
1/3-l)   . (10) 

In eqn (10), the parameter T| is called the anharmonicity factor.   Note that, by lattice energy 

potential, we refer to the cold energy expressed relative to the infinite lattice-separation condition: 

E    = E   - E.   . (11) pot CD v        ' 

The form of Rose et al. [8] is such that the potential energy could be expressed in terms of a 

single independent variable, a, given by eqn (10). To a very good order, this a variable scales 

the universal potential to that for each material through a single parameter, TJ. In their case, this 

independent variable is expressable in terms of specific volume, as in eqn (10), or alternately in 

terms of lattice spacing, X, as 

a =r)QJX0-l)   . (12) 

We note here that, though adequate for measures of compression, interatomic distance is not the 

natural variable in defining the thermal behavior of a lattice, and thus conclude that it is unlikely 



that a thermal equation of state, of general form, would arise from the Rose potential, if the 

independent variable is left in terms of interatomic distance. 

If a general thermal equation of state were to exist of Grüneisen variety, expressible in terms 

of a single independent variable, then we can see that the characteristic temperature, 0, is the 

natural choice for that variable, since both it and its spacial derivatives directly tie thermal 

behavior to compressive behavior. This case is clearly made by observing that 0 relates to 

thermal behavior of a lattice by way of the Grüneisen function, T, according to eqn (2), where, 

for reminder, \|f equals V/T. Simultaneously, eqn (8) shows how C0 is a complementary solution 

of the Grüneisen cold-compression curve (or alternately, the lattice potential). 

The thermodynamic variable 0 is unique in this regard. However, there is nothing new in 

the assertion about the importance of 0 and its derivatives. Slater [5], Dugdale and 

MacDonald [6] and others have attempted to relate the cold curve to the Grüneisen function (a 

derivative of 0). They recognized T as being key to a general equation of state but did not have, 

at the time, the universal potential of Rose et al, or the cold-compression data that support it, 

at their disposal for comparison. 

Segletes [1] did not know, a priori, the makeup of the G function that might satisfy a general 

form of eqn (6), either in terms of G(V) or, to be truly general, in terms of G(0). However, he 

did know that if a single-variable, general, thermal equation of state exists, then it must satisfy 

or approximate the universal lattice potential of Rose et al. [8]. 

Ignoring, for the moment, the higher order, a3 correction term of eqn (9) (as have many 

sequel authors, including Rose himself), the terms of Rose's potential are exp(-a) and aexp(-a). 

Recalling that Ec = C© is a complementary solution to the Grüneisen cold curve, we shall 

proceed, for the moment, as if this term constitutes the totality of the complementary solution 

space. Though it is possible, under unique boundary conditions, that the complementary solution 

to a differential equation does not appear in the particular solution, such a scenerio is highly 

unlikely in the general case. Proceeding on this basis, we may logically conclude, therefore, that 

if a general thermal equation of state in one variable exists at all, then 0 is the independent 

variable and must correspond to a term or term grouping in the potential of Rose et al. [8], The 



possibilities here are quite limited, and we see that 0 may take on one of only three possible 

forms: either 0 ~ exp(-a), 0 ~ a exp(-c), or 0 goes as the sum of these two terms. 

The second possibility is shown immediately not to be plausible, since 0 ~ a exp(-a) would 

have © equaling zero at ambient lattice spacing. The third possibility, involving the sum of the 

two terms, would essentially leave the energy potential, eqn (9), proportional to 0, which 

amounts to Debye's or Einstein's equation of state, depending on how 0 were defined. Thus, 

Segletes [1] proceeded to investigate the first and only remaining case. With 0 ~ exp(-a) as the 

subject of his investigation, a G function needed to be determined so as to be compatible with 

the universal potential. It was intellectually satisfying to find that taking the absolutely simplest 

form of G in terms of 0 (i.e., G =A® -B) where A and B are constants, then the general 

solution to the Grüneisen equation of state, eqn (9), is 

Ec = B - C0(1 - AIC ln0)   . (13) 

This solution, based on the possibility that 0 ~ exp(-a), may be readily converted into the form 

of Rose et al. (minus the a3 correction), given appropriate selection of constants A, B, and C. 

We thus have an equation of state form, in terms of 0, that can at least be made to fit the 

universal lattice potential and is compatible with the complementary solution of the Grüneisen 

cold curve. This form has come with certain assumptions and conditions, so let us review them. 

First, this form asserts the temperature independence of the Grüneisen function, which seems true 

for many materials over a wide range of pressure and volume. Second, we accept the form of 

the interatomic potential put forth by Rose et al, though we will drop the cubic correction term, 

in the hope that the term will not be necessary, when results are expressed in terms of the natural 

variable, 0, rather than X or V. Third, we assert that the complementary solution to the 

Grüneisen potential should show up as a term in the particular solution, in this case, 

corresponding to a term in the potential of Rose et al. Such a mapping would be a mathematical 

certainty, unless an unusual boundary condition governed, in the general case, to zero out the 

complementary solution from the particular solution. Fourth, a complementary solution to the 

Grüneisen potential was determined, and is proportional to the characteristic temperature, 0. 



Fifth, the only term in Rose's potential to which this 0 term might correspond and still produce 

a new and meaningful equation of state, is the exp(-a) term. This mapping may also be 

expressed as a = -ln(0/0o). 

This mapping mathematically corresponds, for eqns (l)-(4), to the idealized K= 1 case, which 

constitutes one part of the definition for a quasi-harmonic material [4]. The other part of the 

quasi-harmonic definition, that T~Vm, was shown [4], by integration of eqn (2), to imply for 

the quasi-harmonic case only, that 

a = -ln(0/0o) = 3T0(k/X0-l)        (Quasi-Harmonic)   . (14) 

Were actual materials indeed quasi-harmonic, then this mapping for the a variable provides the 

exact definition used by Rose et al. [8], given in eqn (12), since Segletes [1] showed that the 

anharrnonicity parameter, T|, for the K= 1 case, exactly equals 3 T0. The conclusion one may 

draw is that the universal lattice potential of Rose et al [8], minus the cubic correction term, 

corresponds exactly to the zero-temperature potential associated with the idealized form of 

Segletes' equation of state—namely, the quasi-harmonic form. 

To account for nonidealness of real materials, Rose et al. [8] introduced the higher order cubic 

term to their cold-energy potential. Segletes [1], to accomplish a similar correction for nonideal 

effects, relaxed the mapping from the idealized form, a = -ln(0/0o), to a looser form, 

a = -#ln(0/0o), where the parameter, K, was assumed constant and determinate from known 

physical properties. Though this relaxation of the mapping was performed [1] ad hoc, so as to 

facilitate a fit to the data, the author will explore, in a subsequent report, how such a relaxed 

mapping, with the K parameter being allowed to vary slowly, may correspond to other, as yet 

undetermined, complementary solutions to the Grüneisen potential. The remainder of Segletes' 

original paper [1] showed how such a mapping, a = -Ä"ln(0/0O), onto the potential of Rose et 

al, could model the thermal, as well as compressive, behavior of a wide variety of metals. 

We note that this justification for eqn (3) is not a first-principles derivation from lattice 

potential theory. Desirable as that would be, the lack of such a derivation does not indicate an 
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absence of physics in Segletes' model. The physics of the model is that intrinsic to the 

Grüneisen equation of state and the lattice potential of Rose et al. [8], which is supported by 

ample data. The Grüneisen equation indicates that a general thermal equation of state, if it exists, 

ought to contain a C® term. The work of Rose et al. shows a universal potential in terms of the 

lattice-spacing variable, a. The contribution of Segletes [1] was in providing a logical link 

between these existing results, by showing that one of terms in Rose's potential, cast in the 

variable a, should correspond to the 0 term, as dictated by the governing differential equation. 

3.  Quality of Fits to Shock Data 

In response to the criticism that the fits to shock-compression data, as reported in 

reference [1], are "merely adequate," the author is forced to refer such readers back to that 

reference. That paper "intentionally avoid[ed] taking the approach of tuning all available 

parameters... to avoid the criticism of so-called 'knob turning'." Instead, it took the approach of 

deriving all quantities solely from the atomic lattice data provided by Rose et al. [8] and 

handbook data for the thermal expansion coefficient, a. Anyone who has tried to obtain 

published values for the reference value of the Grüneisen function, ro, for example, will have 

noted the wide scatter (10% to 50% or more) in published values. Furthermore, if one tries to 

construct values for r0 using handbook data and the relation T0 = 3aCQ/Cv, where Cv is the 

specific heat, the scatter is equally wide because of published variations and thermal variability 

of the component ingredients to T0. 

So, if one wishes to improve the quality of the fits to shock data over that originally 

reported [1], one simple and wholely justifiable step would be to select values for T0, based on 

the published ranges of T0 or, alternately, published values of a, C0, and Cv. The results for 

palladium, for example, reported in Segletes [1], were based on a T0 value computed as 2.44. 

Kohn [18], for example, reports the value of T0 as 2.84, while Walsh et al. [19] report the value 

as 2.18. If a value of T0 = 2.65 were selected within this range, the quality of the fit to shock 

data (as shown in Figure 1) improves significantly. The same can be done for silver, for which 

the Grünesien value was computed [1] as 2.55. Elsewhere, one may find published values from 

2.2 in Desloge [20] to 2.47 in Walsh et al. [19]. Employing a value of 2.2, as shown in Figure 2, 

provides an excellent fit to the data. 



V/Vn 

Figure 1. Cold curve (lower) and Hugoniot fits (upper) for palladium. Data and dashed 
Hugoniot taken from reference [1], with TQ computed as 2.44. Solid line offers 
improved fit, by selecting T0 in the range of previously published values, at 2.65. 
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Figure 2. Cold curve (lower) and Hugoniot fits (upper) for silver. Data and dashed Hugoniot 
taken from reference [1], with T0 computed as 2.55. Solid line offers improved fit, by 
selecting T0 in the range of previously published values, at 2.2. 

10 



4.  The Volumetric vs. Vibrational Spring Constant 

Segletes [4] examined the relationship between the volumetric spring constant and the 

vibrational spring constant for an atomic lattice. The use here of the term "constant" is perhaps 

a misnomer, since these so-called constants are only constant for the case of an idealized linear 

(i.e., harmonic) spring. In general, these constants will be a function of interatomic distance. 

The volumetric spring constant is defined as the derivative of the interatomic force, F, with 

respect to the lattice spacing, X, or simply dF/dk.  This force, F, is readily related to the cold 

(nonthermal) pressure, pc, by way of the relation, F =pck
2. The vibrational spring constant, on 

the other hand, designated dFvib /dx, is that spring constant that, by definition, characterizes the 

vibrational frequency spectrum of the lattice. 

If nothing else were known of the vibrational frequency spectrum, it would be natural to 

investigate the proportionality of dFvib /dx and dF/dk, since, for a 1-D, simply connected, 

harmonic lattice, these two quantities would, in fact, be identically equal. The assumption that 

the characteristic vibrational stiffness of an atomic spring can be made proportional to an 

associated volumetric stiffness has been pervasive throughout the literature. In addition to 

proving that Dugdale and MacDonald [6] made this assumption, Segletes [4] showed that this 

proportionality was assumed explicitly by Brillouin [16] and more recently by Guinea et al. [17]. 

The assumption was also used in an approximate way by Slater [5]. 

In contrast, Segletes [4] inferred from his equation of state that this proportionality of 

volumetric and vibrational spring constants does not hold, in general. Whereas the vibrational 

spring constant, according to vibration theory, should vary as dFvib/dx~&2, Segletes' showed [4], 

for his idealized quasi-harmonic case, that dF/dk ~ ® [1 + ln(©/®0)]. To infer this distinction 

from Segletes' equation of state is not to prove the distinction, and since the validity of such an 

implication would have the effect of overturning a large body of literature that has relied on this 

assumed proportionality, it would do much to bolster the acceptability of Segletes' equation of 

state if it could be proven, through other means, that a strict proportionality does not exist 

between the volumetric and vibrational spring constants. Fortunately, such a proof is easily at 

hand. 

11 



To make this proof, first realize that the interatomic potential for any lattice, expressed as 

energy vs. lattice spacing, is concave-up over all ranges of compression and into mild ranges of 

lattice expansion, out to an inflection point. For lattice spacings beyond this inflection point, the 

energy potential is concave downward out to infinity, whereupon the lattice energy approaches 

a constant value of zero (if the energy plotted is Epot) or the binding energy (if the energy plotted 

is Ec). The interatomic force, F, is the (negative of the) derivative of this energy potential curve 

with respect to atomic lattice spacing, and the volumetric spring constant is the derivative of this 

force. By the rules of calculus, the interatomic force reaches an extremum, while the volumetric 

spring constant (the force's derivative) takes on a value of zero at this inflection point in the 

energy potential. The universal potential of Rose et al. [8], for example, shows this effect (see 

Figure 3). For expansions beyond this inflection point, the volumetric spring constant, dFldk, 

actually changes sign (which is why the lattice becomes mechanically unstable at that point, as 

was shown by Guinea et al. [17]). As the lattice separation becomes very large, the energy 

potential becomes flat, and the volumetric spring constant, once again, approaches zero, though 

this time asymptotically. 

The characteristic frequency of the lattice, on the other hand, is a positive, monotonically 

decreasing function of interatomic distance, which does not reach zero until infinite separation. 

If the decrease of 0 were not monotonic, eqn (2) tells us that the Grüneisen function would 

become negative, which does not occur (with the possible exception near phase changes, where 

behavior is not governed by Grüneisen's assumption in any event). Since vibration theory tells 

us that dFvib/dx is proportional to the square of the characteristic lattice frequency, one may 

logically conclude that the vibrational spring constant is also a monotonically decreasing function 

of interatomic distance that does not reach zero until infinite separation. Thus, we may logically 

conclude that a simple proportionality between dFv!hldx and dFldk is not possible, since dFvib Idx 

is a positive, monotonically decreasing function of interatomic distance, while dFldk has been 

shown to be neither monotonic nor exclusively positive. 

As to why such a proportionality does not hold, the author believes that the reason lies in the 

fact that real atomic lattices, unlike most of the idealized lattice models, experience non-nearest 

neighbor interactions. And though an atom in the lattice is primarily affected by its nearest 

neighbors, the more distant atoms, too, exert an influence.  Let us keep this in mind when we 
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Figure 3. The energy potential of Rose et al. [8], depicting inflection point and, thus, location 
of force extremum and volumetric-spring-constant zero. 
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imagine the physical processes that go into the makeup of the volumetric and vibrational spring 

constants. Consider an atom, for simplicity's sake, in a 1-D atomic lattice (a line of atoms), 

where the point can be made. The volumetric spring constant, dFldk, answers the question of 

what happens to the interatomic force on this atom when every atom in the lattice experiences 

a change in distance from its nearest neighbor. When measured with respect to our atom of 

interest, the separation to its nearest neighbors changes by a distance of dk, the separation to its 

second nearest neighbors changes by 2dk, its third neighbors by 3dk, and so on. 

By comparison, the vibrational spring constant, dFvib/dx, answers the question of what 

happens to the interatomic force on this atom when only it moves with respect to a lattice, which 

is, on average, at a fixed location. The real problem is more difficult, of course, since all the 

other atoms, in addition to our atom of interest, are vibrating about their fixed locations as well. 

Ignoring the vibrations of the rest of the lattice, for purposes of qualitative illustration, the 

separation distance from our atom of interest measured to any of our atom's neighbors is changed 

by ±dx as a result of the vibrational motion of our atom, regardless of whether the neighbor is 

adjacent to or far removed from our atom of interest. It is quite clear that these two processes 

are distinct, and a summation of the dF contributions from all the neighbors will likewise be 

different for these two cases. It is thus equally clear that there is no reason to suspect that 

measures of those processes, as quantified in the volumetic and vibrational spring constants, 

respectively, should be functionally proportional. Brillouin [16] realized this situation, as well, 

and discussed some general properties of the frequency spectrum of a lattice under the conditions 

of non-nearest neighbor interactions. Most of his rigorous solutions, however, pertain to the 

simpler case of nearest neighbor interactions only, where one is lured into concluding a 

proportionality between the volumetric and vibrational spring constants. 

5. The Non-Griineisen Behavior of Aluminum 

The one material analyzed by Segletes [1] that seems to cause a great deal of consternation 

in the readership is aluminum. It is no wonder, since one could argue that aluminum has been 

unofficially selected as the standard material to which other equations of state are compared. 

Yet, to fit the form of eqn (1) at moderate and higher pressures, Segletes required a value of T0 
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equal to 1.20, which is roughly half the value attributed to it at room temperature and zero 

pressure. 

It is only natural, therefore, that one would attribute this discrepancy to Segletes' model [1] 

and not to the intrinsic behavior of aluminum. Yet, the author has insisted [1-3] and continues 

to insist that aluminum is not a well-behaved Grüneisen material. This notion is based not upon 

the discrepancy with the current model, but rather upon earlier equation-of-state stability 

work [13-15]. It was shown [14] that c?V{//<iV> 0 is a requirement for the thermodynamic stability 

of Grüneisen materials. This requirement means that V/T must increase with 

volume—alternately, that T can not proportionately change more rapidly than volume. Fits to 

T for aluminum by others (e.g., McKenna and Pastine [21]) show a T, which decreases from 

roughly 2.3 to 1.1 over the relative volume range of V/V0= 1.0 to 0.82, translating to an average 

dty/dV of -1.73 over that domain. The implication of violating this stability criterion is that, at 

elevated pressures, (dE/dV)p < 0. This sort of behavior, in which an energy addition at constant 

pressure causes material contraction, would generally occur only near a phase change. In 

aluminum, using this averaged value of d\\r/dV, such violations would occur at pressures as low 

as 200 kbar, where no phase changes are known to occur. 

Such a steep gradient in i|f also violates the Hugoniot stability criterion, given as dyldV> -1. 

Under such a violation, it was shown [13] that shocks originating at elevated temperatures, 

actually can produce postshock pressure values below the preshocked pressure—clearly a 

nonsensical result. Such behavior does not occur in real materials. Therefore, if one cannot 

account for this anomalous behavior by the presence of phase changes (and we cannot in the case 

of aluminum), then the only remaining conclusion is that T experiences a temperature dependence 

at mild elevations of temperature. This is to say that aluminum violates the temperature 

independence of the Grüneisen assumption. The author has pointed out [1-3] that Grodzka [22] 

presents data that support this notion. It is indeed ironic that aluminum, the material for which 

the greatest quantity of shock data likely exists, which is used as a reference material for so many 

shock experiments, should exhibit behavior that so demonstrably violates the temperature 

independence of the Grüneisen assumption. 
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6. Isentropic Transitions 

An interesting side note to Segletes' equation of state is that the @-»ß mapping was made 

on the basis of the complementary solution, eqn (8), to the Grüneisen cold-curve. This same 

complementary solution, in fact, arises for the solution of any Grüneisen isentrope (whereupon 

(dE/dV)s = -p), of which the cold curve is but one. If this 0->a mapping has the validity that 

the data seem to show, then it would imply that the form of Rose et cd. [8] is applicable for 

isentropes, and not isotherms, as was originally asserted by Vinet et al. [9,10]. 

Such a conclusion, we will see, is also compatible with the lattice specific-heat theories of 

Einstein and Debye. When considering either theory for the heat capacity of a crystal lattice, an 

examination of the respective expressions for entropy, S, indicates that entropy for a given lattice 

remains constant when the quantity <8>/T remains constant, where T is the absolute temperature. 

Further, both theories indicate that when the quantity &/T is held constant, the quantity Ethrm/@ 

also remains constant, where the subscript "thrm" defines the thermal component of the quantity, 

at a given density. 

This condition, which, according to specific heat theory, defines the isentrope, 

E^Q = constant, will be shown to fall out the Grüneisen equation of state as well. To see this, 

take the Grüneisen equation, eqn (5), with the cold curve as the reference, and express it as 

Pt^-Ethm = 0   . (15) 

Since (dE/dV)s—p and E'c = -pe, it foUows that (dEthrm/dV)s—pthrm as well. So, eqn (15) takes 

the familiar form of 

VEL + Ethm = 0  , (16) 

the solution of which is Ethrm ~ ©. Unlike the cold curve, however, where this solution was 

merely the complementary solution to the differential equation, the thermal part of the problem 

is homogeneous to begin with, and, so, this solution defines the particular solution as well for 
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isentropic transitions. Another way of expressing this solution is {Ethml&)s = constant, which is 

the same result that arises out of lattice specific-heat theory. And since the characteristic 

temperature is the independent variable in Segletes' equation of state, this relation provides an 

extremely convenient method to evaluate isentropic transitions. 

7. Conclusions 

A variety of subjects were touched upon, in reference to Segletes' equation of state [1-4]. 

Early feedback that the author has received, both positive and negative, has prompted this report, 

in an attempt to clarify, explain, and in some cases, prove various facets of the model. 

In this report, the basic form employed by Segletes [1], when originally introducing his 

equation of state, is justified in a more rigorous manner. It is shown how the characteristic 

temperature is the natural thermodynamic variable that directly relates to both thermal and 

compressive behavior of a lattice. It is then shown how the theory of differential equations 

indicates that the complementary solution to the Grüneisen potential, which is proportional to the 

characteristic temperature, 0, should correspond to a term in the interatomic lattice potential, in 

this case, taken as the universal potential of Rose et al. [8]. The only mapping between 0 and 

a term in the potential of Rose et al, which is both unique and meaningful, was the mapping that 

Segletes chose in his original work [1]. It is shown how the universal potential of Rose et al. 

minus the cubic correction term it contains, corresponds exactly to the potential that results from 

the idealized form of Segletes' thermal equation of state, known as the quasi-harmonic 

idealization [4]. 

The question of the quality of fits achievable by Segletes' equation is then addressed. It is 

shown that, indeed, excellent fits may be obtained to data, better than those previously 

reported [1] (which were themselves exceptional, in the author's opinion, though merely adequate, 

to others). The quality of fit is improved by judiciously selecting the values of the physical 

parameters, which drive the model, in the range of previously reported (thus plausible) values, 

rather than just using a single source of data to obtain those parameter values. Such a technique 

was explicitly avoided in the original work [1], to avoid charges of so-called "parameter tuning.'' 
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A proof, employing the mathematical shape of the lattice energy potential, was given to show 

that a strict proportionality between the volumetric and vibrational spring constants of an atomic 

lattice cannot exist. The fact that Segletes' model implies a functional uniqueness to these two 

spring constants had gone counter to a whole body of literature that had derived results based on 

the assumption of an intrinsic proportionality [4]. By offering the independent proof here that 

no such proportionality can exist, a possible stumbling block to the acceptance of Segletes' model 

has been removed. A qualitative explanation was offered as to why, on the atomic level, such 

a proportionality should not exist. 

The behavior of aluminum is, once more, and in greater detail, addressed. The seemingly 

anomalous behavior is explainable if one accepts the notion that aluminum experiences a 

temperature dependence of the Grüneisen function at mildly elevated temperatures. It is shown 

how prior theoretical work supports the notion that aluminum, in fact, violates the temperature 

independence of the Grüneisen assumption. Such a concept has met with resistance in the 

readership, perhaps because of aluminum's predominance as a standard material in equation-of- 

state experiments. 

A brief note was made showing how, for an equation of state based on characteristic 

temperature, isentropic transitions may be easily calculated. Such a method is readily applicable 

to Segletes' equation of state. 
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ATTN WADE M KORNEGAY 
244 WOOD ST RM S2 139 
LEXINGTON MA 02173 

1       BROWN UNIVERSITY 
DIV OF ENGINEERING 
ATTN R CLIFTON 
PROVIDENCE RI 02912 
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CALTECH 
ATTN ANDREW P INGERSOLL MS 170 25 
THOMAS J AHRENS MS 252 21 
1201 E CALIFORNIA BLVD 
PASADENA CA 91125 

CALTECH 
ATTN GLENN ORTON MS 169 237 
4800 OAK GROVE DR 
PASADENA CA 91007 

DREXEL UNIVERSITY 
ATTN PHYSICS DEPT 
32ND & CHESTNUT ST 
PHILADELPHIA PA 19104 

GEORGIA INSTITUTE OF TECHNOLOGY 
COMPUTATIONAL MODELING CENTER 
ATTN S ATLURI 
ATLANTA GA 30332-0356 

GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF MAIL SCIENCE & ENGNG 
ATTN K LOGAN 
ATLANTA GA 30332-0245 

IOWA STATE UNIVERSITY 
DEPT PHYSICS AND ASTRONOMY 
ATTN JIM ROSE 
34 PHYSICS 
AMES IA 50011 

JOHNS HOPKINS UNTV 
APPLIED PHYSICS LAB 
ATTN TERRY R BETZER 
ALVIN R EATON 
RICHARD H KEITH 
DALE K PACE 
ROGER L WEST 
JOHNS HOPKINS ROAD 
LAUREL MD 20723 

LOUISIANA STATE UNIVERSITY 
ATTN ROBERT W COURIER 
948 WYLIE DR 
BATON ROUGE LA 70808 

NO. OF 
COPIES 

1 

ORGANIZATION 

MIT DEPT OF EARTH ATMOS AND 
PLANETARY SCIENCES 
ATTN HEIDI B HAMMELL 54 316 
CAMBRIDGE MA 02139 

NC STATE UNIVERSITY 
ATTN YASUYUKI HORIE 
RALEIGH NC 27695-7908 

PENNSYLVANIA STATE UNIVERSITY 
ATTN   PHYSICS DEPT 
UNIVERSITY PARK PA 16802 

SOUTHWEST RESEARCH INSTITUTE 
ATTN C ANDERSON 
S A MULLIN 
B COUR PALAIS 
J RIEGEL 
J WALKER 
PO DRAWER 28510 
SAN ANTONIO TX 78284 

TEXAS A&M UNIVERSITY 
PHYSICS DEPARTMENT 
ATTN DAN BRUTON 
COLLEGE STATION TX 77843-4242 

UC BERKELEY 
MECHANICAL ENGINEERING DEPT 
GRADUATE OFFICE 
ATTN KEZHUN LI 
BERKELEY CA 94720 

UC DAVIS 
INST OF THEORETICAL DYNAMICS 
ATTN E G PUCKETT 
DAVIS CA 95616 

UC LOS ANGELES 
DEPT OF MAT SCIENCE & ENGNG 
ATTN J J GILMAN 
LOS ANGELES CA 90024 

UC SAN DIEGO 
DEPT APPL NECH & ENGR 
SVCS R011 
ATTN S NEMAT-NASSER 
M MEYERS 
LA JOLLA CA 92093-0411 
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UNIV OF ALA HUNTSVILLE 
AEROPHYSICS RSCH CTR 
ATTN GARY HOUGH 
DAVID J LIQUORNIK 
PO BOX 999 
HUNTSVILLE AL 35899 

UNIV OF ALA HUNTSVILLE 
CIVIL ENGRNG DEPT 
ATTN WILLIAM P SCHONBERG 
HUNTSVILLE AL 35899 

UNIVERSITY OF CHICAGO 
DEPT OF THE GEOPHYSICAL SCIENCES 
ATTN G H MILLER 
5734 S ELLIS AVE 
CHICAGO IL 60637 

UNIVERSITY OF DAYTON RSCH INST 
KLA14 
ATTNNBRAR 
DGROVE 
A PIEKUTOWSKI 
300 COLLEGE PARK 
DAYTON OH 45469-0182 

UNIVERSITY OF DELAWARE 
DEPT OF MECHANICAL ENGINEERING 
ATTN PROF J GILLESPIE 
DEAN R B PIPES 
PROF J VINSON 
PROF D WELKINS 
NEWARK DE 19716 

1       UNIVERSITY OF TEXAS 
DEPT OF MECHANICAL ENGINEERING 
ATTN ERIC P FAHRENTHOLD 
AUSTIN TX 78712 

1 VIRGINIA POLYTECHNIC INSTITUTE 
COLLEGE OF ENGINEERING 
ATTN R BATRA 
BLACKSBURG VA 24061-0219 

2 AEROJET 
ATTN J CARLEONE 
SKEY 
PO BOX 13222 
SACRAMENTO CA 95813-6000 

2 AEROJET ORDNANCE 
ATTN P WOLF 
G PADGETT 
1100 BULLOCH BLVD 
SOCORRO NM 87801 

3 ALLLANT TECHSYSTEMS INC 
ATTN T HOLMQUIST MN11 2720 
RSTRYK 
G R JOHNSON MN11 2925 
600 SECOND ST NE 
HOPKINS MN 55343 

1       ALME AND ASSOCIATES 
ATTN MARVIN L ALME 
6219 BRIGHT PLUME 
COLUMBIA MD 21044-3790 

UNIVERSITY OF ILLINOIS 
PHYSICS BUILDING 
ATTN A V GRANATO 
URBANA, IL 61801 

UNIVERSITY OF MARYLAND 
ATTN PHYSICS DEPT (BLDG 082) 
COLLEGE PARK MD 20742 

UNIVERSITY OF PUERTO RICO 
DEPT CHEMICAL ENGINEERING 
ATTN L A ESTEVEZ 
MAYAGUEZ PR 00681-5000 

APPLIED RESEARCH ASSOC INC 
ATTN JEROME D YATTEAU 
5941 S MJDDLEFIELD RD SUITE 100 
LITTLETON CO 80123 

APPLIED RESEARCH ASSOC INC 
ATTN DENNIS GRADY 
FRANK MAESTAS 
4300 SAN MATEO BLVD SE 
ALBUQUERQUE NM 87110 

BATTELLE 
ATTN ROBER M DUGAS 
7501 S MEMORIAL PKWY SUITE 101 
HUNTSVILLE AL 35802-2258 
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BOEING AEROSPACE CO 
SHOCK PHYSICS & APPLIED MATH 
ENGINEERING TECHNOLOGY 
ATTN R HELZER 
T MURRAY 
J SHRADER 
PO BOX 3999 
SEATTLE WA 98124 

BOEING HOUSTON SPACE STN 
ATTN RUSSELL F GRAVES 
BOX 58747 
HOUSTON TX 77258 

BRIGS CO 
ATTN JOSEPH E BACKOFEN 
2668 PETERSBOROUGH ST 
HERNDON VA 20171-2443 

1       DOW CHEMICAL INC 
ORDNANCE SYSTEMS 
ATTNCHANEY 
A HART 
B RAFANIELLO 
800 BUILDING 
MIDLAND MI 48667 

1       G E DUVALL 
5814 NE82ND COURT 
VANCOUVER WA 98662-5944 

3       DYNA EAST CORP 
ATTN P C CHOU 
R CICCARELLI 
WFLIS 
3620 HORIZON DRIVE 
KING OF PRUSSIA PA 19406 

CALIFORNIA RSCH & TECHNOLOGY 
ATTN M MAJERUS 
PO BOX 2229 
PRINCETON NJ 08543 

CENTURY DYNAMICS INC 
ATTN N BIRNBAUM 
2333 SAN RAMON VALLEY BLVD 
SAN RAMON CA 94583-1613 

COMPUTATIONAL MECHANICS 
CONSULTANTS 
ATTN J A ZUKAS 
PO BOX 11314 
BALTIMORE MD 21239-0314 

DYNASEN 
ATTN JACQUES CHAREST 
MICHAEL CHAREST 
MARTIN LILLY 
20 ARNOLD PL 
GOLETACA 93117 

R J EICHELBERGER 
409 W CATHERINE ST 
BEL AIR MD 21014-3613 

ELORET INSTITUTE 
ATTN DAVID W BOGDANOFF MS 230 2 
NASA AMES RESEARCH CENTER 
MOFFETT FIELD CA 94035 

CYPRESS INTERNATIONAL 
ATTN A CAPONECCHI 
1201 E ABINGDON DR 
ALEXANDRIA VA 22314 

DEFENSE TECHNOLOGY INTL. INC 
ATTN D E AYER 
THE STARK HOUSE 
22 CONCORD ST 
NASHUA NH 03060 

DESKIN RESEARCH GROUP INC 
ATTN EDWARD COLLINS 
2270 AGNEW RD 
SANTA CLARA CA 95054 

ENIG ASSOCIATES INC 
ATTN J ENIG 
D J PASTINE 
M COWPERTHWAITE 
SUITE 500 
11120 NEW HAMPSHIRE AVE 
SILVER SPRING MD 20904-2633 

EXPLOSIVE TECHNOLOGY 
ATTN M L KNAEBEL 
PO BOX KK 
FAIRFIELD CA 94533 
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1 GB TECH LOCKHEED 
ATTN JAY LAUGHMAN 
2200 SPACE PARK SUITE 400 
HOUSTON TX 77258 

2 GB TECH LOCKHEED 
ATTN LUCILLE BORREGO C23C 
JOE FALCON JR C23C 
2400 NASA ROAD 1 
HOUSTON TX 77058 

6       GDLS 
38500 MOUND RD 
ATTN W BURKE MZ436-21-24 
G CAMPBELL MZ436-30-44 
D DEBUSSCHER MZ436-20-29 
J ERIDON MZ436-21-24 
W HERMAN MZ 435-01-24 
S PENTESCU MZ436-21-24 
STERLING HTS MI 48310-3200 

2       GENERAL RESEARCH CORP 
ATTN A CHARTERS 
TMENNA 
PO BOX 6770 
SANTA BARBARA CA 93160-6770 

2       GRC INTERNATIONAL 
ATTN TIMOTHY M CUNNINGHAM 
WILLIAM M ISBELL 
5383 HOLLISTER AVE 
SANTA BARBARA CA 93111 

6       INST OF ADVANCED TECHNOLOGY 
UNIVERSITY OF TX AUSTIN 
ATTN STEPHEN J BLESS 
JAMES CAZAMIAS 
HARRY D FAIR 
THOMAS M KEHNE 
DAVID JJTTLEFIELD 
MIKE NORMANDIA 
4030-2 W BRAKER LN 
AUSTIN TX 78759 

1       INTERNATIONAL RESEARCH ASSOC 
ATTN D ORPHAL 
4450 BLACK AVE 
PLEASANTON CA 94566 

1       INTERPLAY 
ATTN F E WALKER 
18 SHADOW OAK RD 
DANVILLE CA 94526 

1       KAMAN SCIENCES CORP 
ATTN DENNIS L JONES 
2560 HUNTINGTON AVE SUITE 200 
ALEXANDRIA VA 22303 

8       KAMAN SCIENCES CORP 
ATTN J ELDER 
RICHARD P HENDERSON 
DAVID A PYLES 
FRANK R SAVAGE 
JAMES A SUMMERS 
JAMES S WILBECK 
TIMOTHY W MOORE 
THYYEM 
600 BLVD S SUITE 208 
HUNTSVILLE AL 35802 

3 KAMAN SCIENCES CORP 
ATTN SHELDON JONES 
GARY L PADEREWSKI 
ROBERT G PONZINI 
1500 GRDN OF THE GODS RD 
COLORADO SPRINGS CO 80907 

4 KAMAN SCIENCES CORP 
ATTN NASIT ARI 
STEVE R DJJEHL 
WILLIAM DOANE 
VERNON M SMITH 
PO BOX 7463 
COLORADO SPRINGS CO 80933-7463 

1       D R KENNEDY & ASSOC INC 
ATTN D KENNEDY 
PO BOX 4003 
MOUNTAIN VIEW CA 94040 

1       KERLEY PUBLISHING SERVICES 
ATTN G I KERLEY 
PO BOX 13835 
ALBUQUERQUE NM 87192-3835 
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KTECH CORPORATION 
ATTN FRANK W DAVIES 
LARRY M LEE 
901 PENNSYLVANIA NE 
ALBUQUERQUE NM 87110 

LIVERMORE SOFTWARE TECH CORP 
ATTN J O HALLQUIST 
2876 WAVERLY WAY 
LIVERMORE CA 94550 

1       MCDONNELL DOUGLAS 
ASTRONAUTICS CO 
ATTN B L COOPER 
5301 BOLSA AVE 
HUNTINGTON BEACH CA 92647 

1       ORLANDO TECHNOLOGY INC 
ATTN DANIEL A MATUSKA 
PO BOX 855 
SHALIMAR FL 32579 

LOCKHEED MARTIN MISSLE & SPACE 
ATTN WILLIAM R EBERLE 
PO BOX 070017 
HUNTSVILLE AL 35807 

LOCKHEED MARTIN MISSILE & SPACE 
ATTN M A LEVIN ORG 81 06 BLDG 598 
M R MCHENRY 
T A NGO ORG 81 10 BLDG 157 
111 LOCKHEED WAY 
SUNNYVALE CA 94088 

LOCKHEED MISSILE & SPACE CO 
ATTN JOHN R ANDERSON 
WILLIAM C KNUDSON 
S KUSUMI 0 81 11 BLDG 157 
J PHILLIPS 0 54 50 
PO BOX 3504 
SUNNYVALE CA 94088 

LOCKHEED MISSILE & SPACE CO 
ATTN R HOFFMAN 
SANTA CRUZ FACILITY 
EMPIRE GRADE RD 
SANTA CRUZ CA 95060 

LOCKHEED NASA JSC 
SPACE SCIENCE BRANCH 
ATTN JAMES HYDE 
BOX 58561 MC B22 
HOUSTON TX 77258 

LOCKHEED MARTIN AEROSPACE 
ATTN D R BRAGG 
PO BOX 5837 MP 109 
ORLANDO FL 32855 

PHYSICAL SCIENCES INC 
ATTN PETER NEBOLSINE 
20 NEW ENGLAND BUS CTR 
ANDOWER MA 01810 

PHYSICS INTERNATIONAL 
ATTN R FUNSTON 
GFRAZIER 
LGARNETT 
PO BOX 5010 
SAN LEANDRO CA 94577 

PRCINC 
ATTN J ADAMS 
5166 POTOMAC DR #103 
KING GEORGE VA 22485-5824 

RAYTHEON ELECTRONIC SYSTEMS 
ATTNRKARPP 
50 APPLE HILL DRIVE 
TEWKSBURY MA 01876 

ROCKWELL INTERNATIONAL 
ROCKETDYNE DIVISION 
ATTN H LEEFER 
16557 PARK LN CIRCLE 
LOS ANGELES CA 90049 

ROCKWELL MISSILE SYS DIV 
ATTN T NEUHART 
1800 SATELLITE BLVD 
DULUTH GA 30136 

SAIC 
ATTN JAMES FURLONG 
GREGORY J STRAUCH 
1710 GOODRJJDGE DR 
MCLEAN VA 22102 
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SAIC 
ATTN MICHAEL W MCKAY 
10260 CAMPUS POINT DR 
SAN DIEGO CA 92121 

SHOCK TRANSIENTS INC 
ATTN DAVID DAVISON 
BOX 5357 
HOPKINS MN 55343 

SIMULATION & ENG CO INC 
ATTN ELSA I MULLINS 
STEVEN E MULLINS 
8840 HWY 20 SUITE 200 N 
MADISON AL 35758 

SOUTHERN RESEARCH INSTITUTE 
ATTN LINDSEY A DECKARD 
DONALD P SEGERS 
PO BOX 55305 
BIRMINGHAM AL 35255-5305 

SRI INTERNATIONAL 
ATTN JAMES D COLTON 
DCURRAN 
RKLOOP 
R L SEAMAN 
D A SHOCKEY 
333 RAVENSWOOD AVE 
MENLO PARK CA 94025 

TELEDYNE BROWN ENGR 
ATTN JIM W BOOTH 
MARTIN B RICHARDSON 
PO BOX 070007 MS 50 
HUNTSVILLE AL 35807-7007 

ZERNOW TECHNICAL SVCS INC 
ATTN LOUIS ZERNOW 
425 W BONJTA AVE SUITE 208 
SAN DIMAS CA 91773 

NO. OF 
COPIES   ORGANIZATION 

ABERDEEN PROVING GROUND 

35     DIR, USARL 
ATTN: AMSRL-WM, I MAY 

AMSRL-WM-MC, J WELLS 
AMSRL-WM-MF, 

SCHOU 
DDANDEKAR 
ARAJENDRAN 

AMSRL-WM-PA, S HOWARD 
AMSRL-WM-PB, A ZIELINSKI 
AMSRL-WM-PC, R PESCE-RODRIGUEZ 
AMSRL-WM-PD, G GAZONAS 
AMSRL-WM-T, W F MORRISON 
AMSRL-WM-TA, 

M BURKINS 
W GILLICH 
W BRUCHEY 
JDEHN 
GFILBEY 
W A GOOCH 
HW MEYER 
E J RAPACKI 
JRUNYEON 

AMSRL-WM-TB, 
RFREY 
PBAKER 
R LOTTERO 
J STARKENBERG 

AMSRL-WM-TC, 
W S DE ROSSET 
TWBJERKE 
R COATES 
FGRACE 
KKIMSEY 
M LAMPSON 
D SCHEFFLER 
SSCHRAML 
G SELSBY 
B SORENSEN 
R SUMMERS 
W WALTERS 
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16     DIR, USARL 
AMSRL-WM-TD, 

A M DIETRICH 
KFRANK 
J HARRISON 
M RAFTENBERG 
G RANDERS-PEHRSON 
M SCHEIDLER 
S SCHOENFELD 
S SEGLETES (5 CP) 
J WALTER 
T WRIGHT 

AMSRL-WM-WD, 
J POWELL 
APRAKASH 
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AERONAUTICAL & MARITIME 
RESEARCH LABORATORY 
ATTN N BURMAN 
S CIMPOERU 
DPAUL 
PO BOX 4331 
MELBOURNE VIC 3001 
AUSTRALIA 

EMBASSY OF AUSTRALIA 
ATTN R WOODWARD 
COUNSELLOR DEFENCE SCIENCE 
1601 MASSACHUSETTS AVE NW 
WASHINGTON DC 20036-2273 

ABTEILUNG FUER PHYSIKALISCHE 
CHEMIE 
MONTANUNIVERSITAET 
ATTN E KOENIGSBERGER 
A 8700 LEOBEN 
AUSTRIA 

PRB S A 
ATTN M VANSNICK 
AVENUE DE TERVUEREN 168 BTE 7 
BRUSSELS B 1150 
BELGIUM 

ROYAL MILITARY ACADEMY 
ATTN E CELENS 
RENAISSANCE AVE 30 
B1040 BRUSSELS 
BELGIUM 

BULGARIAN ACADEMY OF SCIENCES 
SPACE RESEARCH INSTITUTE 
ATTN VALENTIN GOSPODINOV 
1000 SOFIA PO BOX 799 
BULGARIA 

CANADIAN ARSENALS LTD 
ATTN P PELLETIER 
5 MONTEE DES ARSENAUX 
VILLIE DE GRADEUR PQ J5Z2 
CANADA 

DEFENCE RSCH ESTAB SUFFTELD 
ATTN D MACKAY 
RALSTON ALBERTA TOJ 2NO RALSTON 
CANADA 

NO. OF 
COPIES 

1 

ORGANIZATION 

DEFENCE RSCH ESTAB SUFFEELD 
ATTN CHRIS WEICKERT 
BOX 4000 MEDICINE HAT 
ALBERTA TIA 8K6 
CANADA 

DEFENCE RSCH ESTAB VALCARTIER 
ARMAMENTS DIVISION 
ATTN R DELAGRAVE 
2459 PIE XI BLVD N 
PO BOX 8800 
CORCELETTE QUEBEC GOA 1R0 
CANADA 

UNIVERSITY OF GUELPH 
PHYSICS DEPT 
ATTN C G GRAY 
GUELPH ONTARIO 
NIG 2W1 
CANADA 

CEA 
ATTN ROGER CHERET 
CEDEX 15 
313 33 RUE DE LA FEDERATION 
PARIS 75752 
FRANCE 

CEA 
CISI BRANCH 
ATTN PATRICK DAVID 
CENTRE DE SACLAY BP 28 
GIF SUR YVETTE 91192 
FRANCE 

CEA/CESTA 
ATTN ALAIN GEILLE 
BOX2LEBARP33114 
FRANCE 

CENTRE D'ETUDES DE GRAMAT 
ATTN SOLVE GERARD 
CHRISTIAN LOUPIAS 
PASCALE OUTREBON 
J CAGNOUX 
C GALLIC 
JTRANCHET 
GRAMAT 46500 
FRANCE 
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CENTRE DETUDES DE LIMEIL-VALENTON 
ATTN CHRISTIAN AUSSOURD 
JEAN-CLAUDE BOZJER 
SAINT GEORGES CEDEX 
VnXENEUVE 94195 
FRANCE 

CENTRE D'ETUDES DE VAUJOURS 
ATTN PLOTARD JEAN-PAUL 
ERIC BOTTET 
TAT SIHN VONG 
BOITE POSTALE NO 7 
COUNTRY 77181 
FRANCE 

CENTRE DE RECHERCHES 
ET DETUDES D'ARCUEIL 
ATTN D BOUVART 
C COTTENNOT 
S JONNEAUX 
HORSINI 
S SERROR 
F TARDIVAL 
16 BIS AVENUE PRJEUR DE 
LA COTE D'OR 
F94114 ARCUEEL CEDEX 
FRANCE 

DAT ETBS CETAM 
ATTN CLAUDE ALTMAYER 
ROUTE DE GUERRY BOURGES 
18015 
FRANCE 

ETBS DSTI 
ATTN P BARKER 
ROUTE DE GUERAY 
BOITE POSTALE 712 
18015 BOURGES CEDEX 
FRANCE 

FRENCH GERMAN RESEARCH INST 
ATTN CHANTERET P-Y 
CEDEX 12 RUE DE FINDUSTRIE 
BP301 
F68301 SAINT-LOUIS 
FRANCE 

NO. OF 
COPIES ORGANIZATION 

FRENCH GERMAN RESEARCH INST 
ATTN HANS-JURGEN ERNST 
FRANCIS JAMET 
PASCALE LEHMANN 
KHOOG 
HLERR 
CEDEX 5 5 RUE DU GENERAL 
CASSAGNOU 
SAINT LOUIS 68301 
FRANCE 

LABORATOIRE DE TECHNOLOGIE DES 
SURFACES 
ECOLE CENTRALE DE LYON 
ATTN VTNETP 
BP163 
69131 ECULLY CEDEX 
FRANCE 

BATTELLE INGENJEUTECHNIK GMBH 
ATTN W FUCHE 
DUESSELDORFFER STR 9 
ESCHBORN D 65760 
GERMANY 

CONDAT 
ATTN J KJERMEIR 
MAXTMILIANSTR 28 
8069 SCHEYERN FERNHAG 
GERMANY 

DEUTSCHE AEROSPACE AG 
ATTN MANFRED HELD 
POSTFACH 13 40 
D 86523 SCHROBENHAUSEN 
GERMANY 

DIEHL GBMH AND CO 
ATTN M SCHILDKNECHT 
FISCHBACHSTRASSE 16 
D 90552 RÖTBENBACH AD PEGNTTZ 
GERMANY 
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ERNST MACH INSTITUT 
ATTN VOLKER HOHLER 
E SCHMOLINSKE 
E SCHNEIDER 
ASTJLP 
KTHOMA 
ECKERSTRASSE 4 
D-7800 FREIBURG I BR 791 4 
GERMANY 

EUROPEAN SPACE AGENCY 
ATTN WALTER FLURY 
ESOC5 
ROBT BOSCHT STRASSE 
DARMSTADT 6100 
GERMANY 

FRAUNHOFER INSTITUT FUER 
KURZZEITDYNAMIK 

ERNST MACH INSTITUT 
ATTN H ROTHENHAEUSLER 
HSENF 
E STRASSBURGER 
HAUPTSTRASSE 18 
D79576 WEIL AM RHEIN 
GERMANY 

FRENCH GERMAN RESEARCH INST 
ATTN HARTMUTH F LEHR 
ROLF HUNKLER 
ERICH WOLLMANN 
POSTFACH 1260 
WEIL AM RHEIN D-79574 
GERMANY 

IABG 
ATTN M BORRMANN 
H G DORSCH 
EINSTEINSTRASSE 20 
D 8012 OTTOBRUN B MUENCHEN 
GERMANY 

INGENIEURBÜRO DEISENROTH 
AUF DE HARDT 33 35 
D5204 LOHMAR 1 
GERMANY 

NO. OF 
COPIES ORGANIZATION 

TU CHEMNITZ-ZWICKAU 
ATTN I FABER 
L KRUEGER 
LOTHAR MEYER 
FAKULTAET FUER MASCHINENBAU U. 

VERFAHRENSTECHNIK 
SCHEFFELSTRASSE 110 
09120 CHEMNITZ 
GERMANY 

TECHNISCHE UNIVERSITÄT MUENCHEN 
ATTN EDUARD B IGENBERGS 
RICHARD WAGNER STR 18 111 
MUENCHEN 2 D8000 
GERMANY 

BHABHA ATOMIC RESEARCH CENTRE 
HIGH PRESSURE PHYSICS DIVISION 
ATTN N SURESH 
TROMBAY BOMBAY 400 085 
INDIA 

RAFAEL BALLISTICS CENTER 
ATTN EREZ DEKEL 
YEHUDA PARTOM 
G ROSENBERG 
Z ROSENBERG 
Y YESHURUN 
PO BOX 2250 
HAIFA 31021 
ISRAEL 

TECHNION INST OF TECH 
FACULTY OF MECH ENGNG 
ATTN SOL BODNER 
TECHNION CITY 
HAIFA 32000 
ISRAEL 

ffll RESEARCH INSTITUTE 
STRUCTURE & STRENGTH 

ATTN: TADASHI SHIBUE 
1-15, TOYOSU 3 
KOTO, TOKYO 135 
JAPAN 
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ESTEC CS 
ATTN DOUGLAS CASWELL 
BOX 200 NOORDWIJK 
2200 AG 
NETHERLANDS 

EUROPEAN SPACE AGENCY ESTEC 
ATTN LUCY BERTHOUD 
MICHEL LAMBERT 
POSTBUS BOX 299 NOORDWIJK 
NL2200 AG 
NETHERLANDS 

PRINS MAURITS LABORATORY 
ATTN H J REITSMA 
EDWARD VAN RET 
H PASMAN 
R YSSELSTEIN 
TNO BOX 45 
RIJSWIJK 2280AA 
NETHERLANDS 

ROYAL NETHERLANDS ARMY 
ATTN J HOENEVELD 
V D BURCHLAAN 31 
PO BOX 90822 
2509 LS THE HAGUE 
NETHERLANDS 

HIGH ENERGY DENSITY RESEARCH CTR 
ATTN VLADIMIR E FORTOV 
GENADH I KANEL 
V A SKVORTSOV 
O YU VOJOBIEV 
IZHORSKAJA STR 13/19 
MOSCOW 127412 
RUSSIAN REPUBLIC 

INSTITUTE OF CHEMICAL PHYSICS 
ATTN A YU DOLGOBORODOV 
KOSYGIN ST 4 V 334 
MOSCOW 
RUSSIAN REPUBLIC 

INSTITUTE OF CHEMICAL PHYSICS 
RUSSIAN ACADEMY OF SCIENCES 
ATTN A M MOLODETS 
S V RAZORENOV 
AVUTKIN 
142432 CHERNOGOLOVKA 
MOSCOW REGION 
RUSSIAN REPUBLIC 

INSTITUTE OF MECH ENGINEERING PROBLEMS 
ATTN V BULATOV 
D INDEITSEV 
Y MESCHERYAKOV 
BOLSHOY, 61, V.O. 
ST PETERSBURG 199178 
RUSSIAN REPUBLIC 

IOFFE PHYSICO TECHNICAL INSTITUTE 
DENSE PLASMA DYNAMICS 
LABORATORY 
ATTN EDWARD M DROBYSHEVSKI 
A KOZHUSHKO 
ST PETERSBURG 194021 
RUSSIAN REPUBLIC 

IPERAS 
ATTN A A BOGOMAZ 
DVORTSOVAIA NAB 18 
ST PETERSBURG 
RUSSIAN REPUBLIC 

LAVRENTYEV INST. HYDRODYNAMICS 
ATTN LEV A MERZHIEVSKY 
VICTOR V SILVESTROV 
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